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ABSTRACT The desire to understand tumor complexity has given rise to mathematical models to describe the tumor micro-
environment. We present a new mathematical model for avascular tumor growth and development that spans three distinct
scales. At the cellular level, a lattice Monte Carlo model describes cellular dynamics (proliferation, adhesion, and viability). At
the subcellular level, a Boolean network regulates the expression of proteins that control the cell cycle. At the extracellular level,
reaction-diffusion equations describe the chemical dynamics (nutrient, waste, growth promoter, and inhibitor concentrations).
Data from experiments with multicellular spheroids were used to determine the parameters of the simulations. Starting with a
single tumor cell, this model produces an avascular tumor that quantitatively mimics experimental measurements in multicellular
spheroids. Based on the simulations, we predict: 1), the microenvironmental conditions required for tumor cell survival; and 2),
growth promoters and inhibitors have diffusion coefficients in the range between 10�6 and 10�7 cm2/h, corresponding to
molecules of size 80–90 kDa. Using the same parameters, the model also accurately predicts spheroid growth curves under
different external nutrient supply conditions.

INTRODUCTION

Primary malignant tumors are thought to arise from small

nodes of cells that have either lost, or ceased to respond to,

normal growth regulatory mechanisms, presumably through

mutations and/or altered gene expression (1,2). As the tumor

develops, this genetic instability causes continued malignant

alterations, including invasion, angiogenesis, and metastatic

spread, resulting in a large, biologically complex tumor.

However, essentially all tumors, both primary and metastatic,

go through a relatively simpler, avascular stage of growth,

with nutrient supply by diffusion from the surrounding tissue.

Before developing a blood supply, these tumors are not

capable of acquiring sufficient nutrients to ensure continued

exponential growth of the tumor cell mass despite the con-

tinuous nutrient supply at the tumor surface. Thus, avascular

tumors undergo a quasi-exponential growth phase followed

by a saturation phase in which they maintain approximately

constant volume. The restricted supply of critical nutrients,

such as oxygen and glucose, results in marked gradients

within the cell mass. The tumor cells respond through induced

alterations in physiology and metabolism as well as through

altered gene and protein expression (3,4). In fact, many of the

later manifestations of malignancy, including invasion and

angiogenesis, are thought to be enhanced, if not precipitated,

by the stressful microenvironment that develops in the initial,

avascular tumor nodule. Consequently, a better understand-

ing of the regulation of the growth and malignant de-

velopment of avascular tumors would be beneficial; insights

in such systems would also be valuable in understanding the

heterogeneous microenvironments found within larger tu-

mors (5).

Multicellular tumor spheroids are a frequently used in

vitro model of avascular tumor growth and the microenvi-

ronmental and physiological perturbations that occur in

tumors (6,7). Spheroids are aggregates of tumor cells that can

be grown in precisely controlled external nutrient conditions,

and assays of spheroid parameters, such as volume, cell

number, viable and necrotic fractions, and saturation size, are

relatively easily obtained (8–10). Nutrient supply to spher-

oids is through diffusion from the surface. Thus, as the

aggregate grows, it develops nutrient-deprived inner regions.

Spheroids develop many of the hallmark features of avas-

cular tumors, including proliferation arrest, altered metabo-

lism, perturbed gene and protein expression, necrotic death,

and therapy resistance (3,6,7). In addition, spheroid growth

curves show the same kinetics as those of nodular tumors in

vivo, including quasi-exponential growth and saturation in

size (8,9,11).

A descriptive model (8) to explain the regulation of

growth and viability in spheroids postulates that, at early

stages of development, both growth promoters and viability

promoters can reach all of the cells in the spheroid. During

this early stage, the aggregate is composed of proliferating,

viable cells. As the spheroid grows, the concentration of

growth promoters decreases in the spheroid center, which

eventually falls below a critical value such that cells undergo

proliferation arrest and become quiescent. However, since

the spheroid continues to grow due to the outer proliferating

cells, the central concentration of viability promoters con-

tinues to decrease. Once the concentration of viability pro-

moters drops below a critical value, necrotic cell death
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occurs and the spheroids acquire a necrotic center. Continued

cellular metabolism and/or the process of necrosis cause

growth inhibitors and viability inhibitors to be secreted and

accumulate in the spheroid. When the concentration of growth

inhibitors reaches a critical value in the outer spheroid

region, cell proliferation is further reduced. When viability

inhibitors reach a critical value, they also contribute to the

expansion of the necrotic center. Eventually, the thickness of

the proliferating layer of cells is reduced to a point at which

the number of new cells is equal to the number of cells lost

by cell shedding, causing saturation in the spheroid growth.

Experimental data supports the idea that simple molecules

involved in energy metabolism, such as oxygen and glucose,

are the viability promoters in spheroids (8,9). There is also

some limited data indicating that growth inhibitors are small

protein factors (12). Currently, however, essentially nothing

is known about growth promoters or viability inhibitors in

this tumor model system, or in avascular tumors in vivo.

Recent molecular research with the spheroid system has

suggested that the factors regulating proliferation act through

signaling pathways, which are connected to the cyclin-cyclin

dependent kinase (CDK) cell-cycle regulatory mechanism.

The primary regulatorymechanism in this tumormodel seems

to be the induction of cyclin-dependent kinase inhibitors

(CKIs). LaRue et al. (13) showed that a large upregulation of

the CKI p18 occurred in untransformed fibroblasts cultured as

spheroids, which accounts for their arrest in the G1-phase and

inability to proliferate in aggregate culture. Transformed fi-

broblasts did not show this upregulation of p18, and spheroids

of such cells are able to grow to large sizes. Recently, the same

group has demonstrated that the initial induction of G1-phase

arrest in large spheroids, presumably in response to some

microenvironmental gradient of growth promoters, is due to

the upregulation of two CKIs from different families, p18 and

p27, with little change in CDKs or other CKIs (14). As spher-

oids reach sizes near that of growth saturation, with a sizable

necrotic center, it was also shown that the innermost cells

downregulated all of their cell-cycle regulatory machinery,

including cyclins, CDKs, and CKIs (14). The latter result may

be due to cell exposure to a growth-inhibitory factor, or may

be the result of a prolonged period spent in a nutrient-stressed

state. In either case, these results demonstrate that prolif-

eration arrest in this avascular tumor model is controlled by

a protein regulatory network operating within the tumor cells.

A predictive model of avascular tumor growth has to

account for the complexity of these processes. Important ele-

ments that need to be incorporated in such a model include

cell proliferation and growth, nutrient consumption and dif-

fusion, waste product production and diffusion, effects of

growth promoting and inhibitory factors, intercellular adhe-

sion, and cell-environment interactions, as well as the geom-

etry of the tumor and the cells. Most of the existing models

for cellular dynamics in tumors are either simple empirical

mathematical expressions (11,15), rate equations of cell

populations (16–22), or cellular automaton models of inter-

acting cells, each occupying a single lattice site (23,24). The

only previous tumor model that included cell geometry was

able to reproduce a layered structure only by introducing an

artificial potential (25). A recent model that employs a hybrid

of cellular automata for cell representation and continuous

equations for chemical and blood flow in a hexagonal grid of

blood vessels represents the state-of-the-art in tumor growth

modeling (26,27).

In this article, we present a multiscale cellular model to

describe the dynamics of avascular tumor growth and devel-

opment. At the cellular scale, ourmodel considers cell growth

and proliferation, intercellular adhesion, and necrotic cell

death. At the subcellular scale, we include a protein expres-

sion regulatory network for the control of cell-cycle arrest. At

the extracellular scale, the model considers diffusion, con-

sumption, and production of nutrients, metabolites, growth

promoters, and inhibitors. Data from experiments with

multicellular spheroidswere used to determine the parameters

for the simulations. Starting with a single tumor cell, this

model naturally evolves with time to produce an avascular

tumor that quantitatively mimics experimental measurements

in multicellular spheroids.

METHODS

Multicellular tumor spheroids

Multicellular tumor spheroids of the EMT6/Ro mouse mammary tumor cell

line were cultured in suspension as described in detail previously (8,10).

Spheroids were initiated from monolayer-cultured cells, which were har-

vested to generate a uniform-sized population containing 13 104 spheroids.

These spheroids were then placed into four large spinner flasks fitted with an

apparatus for supplying a controlled gas content and humidity, and were

replenished with fresh medium every 10–14 h. External concentrations of

oxygen and glucose were maintained within 5% of the initial value over

a range of concentrations from 0.08 to 0.28 mM oxygen and 1.6 to 16.5 mM

glucose (10). As shown in Fig. 1, the spheroids developed a spherically

FIGURE 1 Illustration of the morphology and proliferative status of cells

in multicellular spheroids of the EMT6/Ro cell line. (A) Histological cross-

section (optical microscopic image) through the center of a spheroid;1200

mm in diameter stained with eosin and hematoxalin, showing the viable rim

of cells (red) and the necrotic center (orange). (B) Diagram illustrating the

relative distributions of proliferating (green, P) and quiescent (red, Q) cells

and central necrosis (gray, N) in a spheroid, relative to the gradients in

nutrients and waste products. There is not actually a sharp demarcation

between proliferating and quiescent cells as is the case for viable/necrotic

boundary; rather, the fraction of proliferating cells decreases continuously

across the viable cell rim.
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symmetric distribution of proliferating and quiescent cells surrounding a

necrotic core.

For spheroids,400–500 mm in diameter, sampling was done by remov-

ing a volume of the well-mixed spheroid suspension. For measuring the

population mean diameter, a 10-ml sample was removed immediately after

medium change, assayed, and replaced into the flask. For measuring the

number of cells per spheroid, 100 ml of the medium containing the spheroids

were removed at the time of medium change every 48 h, dissociated into

single cells, and assayed. For larger spheroids, sampling is done by collecting

the spheroids that settle in the flask and manually removing the desired

number of spheroids. Spheroids were processed for histology after fixation in

10% buffered formalin using standard techniques, and 5-mm-thick sections

were stainedwith eosin and hematoxalin to distinguish the viable and necrotic

regions (9,10). Parametersmeasured in previous studieswere used to calibrate

and refine the simulation parameters. These parameters include: total spheroid

volume, number of cells per spheroid, cell-cycle phase distribution, and the

thickness of the viable cell rim (8,9). Previously published data on oxygen and

glucose consumption rates (28,29) and oxygen tension distributions within

spheroids (30) were also used in our simulations.

Multiscale cellular model

Our multiscale cellular model consists of three levels. At the cellular level,

a discrete lattice Monte Carlo model considers cell growth, proliferation,

death, and intercellular adhesion. At the subcellular level, a simplified

Boolean protein expression regulatory network controls cell-cycle arrest. At

the extracellular level, a system of differential equations describes diffusion,

consumption, and production of nutrients, metabolites, growth promoters,

and inhibitors. The three levels are closely integrated. We use model param-

eters derived from previous multicellular spheroid experiments.

Cellular model

The cellular model is based on the extended large-Q Potts model (31,32).

A simpler version of cellular and extracellular levels has been published

previously (32) and a model framework has been developed recently (33).

Briefly, the discrete lattice Monte Carlo model partitions the three-dimen-

sional space into domains of cells and cell medium. Every cell is treated as

an individual entity with a unique ID number, which occupies all the lattice

sites within the cell domain (see, e.g., Fig. 2 in (32)). In this representation,

a cell has a finite volume and a deformable shape. A typical cell occupies 27

lattice sites. The extracellular matrix in the spheroids is neglected. Cells have

direct contact and interact with each other through surface adhesion and

competition for space. The interactions are characterized through a total

energy of

H ¼ +
lattice sites

JtðS1ÞtðS2Þ½1� dðS1; S2Þ�1 +
cells

gðv� V
TÞ2: (1)

In the first term, S is the cell ID, Jtt9 corresponds to the adhesive energy

between cell types t and t9, and d is the Kroneker d-function; this term

describes the total energy due to cell surface adhesion to each other.Cell-type-

dependent adhesion is based on the Differential Adhesion Hypothesis

(34,35). Different cell types may express different cell adhesion molecules or

a different number of cell adhesionmolecules on their surfaces, and thus have

different strengths of adhesivity; the differential adhesion hypothesis states

that the difference in cell adhesivity drives cell sorting into minimal surface

energy configuration. In the second term, v and VT are the current and the

target volume of the cell, respectively, and g is the coefficient corresponding

to the elasticity of the cell volume.Anydeviation from the target volumegives

rise to a volume energy, which keeps the cell volume close to the target

volume. Note that our cell type refers to the proliferating status of the cell:

proliferating, quiescent, or necrotic and medium, and not the tissue type.

Moreover, in our model, the different cell types only differ in their physical

properties (cell-cycle duration, metabolic rates, cell adhesion, and maximum

volume). External cell culture medium and the necrotic core are treated as

special cells. Medium does not have a target volume; thus, proliferating cells

can invade the external space when they grow. A necrotic cell, on the other

hand, has a target volume set to its current volume, and a large g-value

corresponding to a rigid body. Thus, its space cannot be invaded by the

growingmass of viable tumor cells. Every time a cell dies, its volume is added

to the target volume of the necrotic core. Our model does not consider

apoptosis; cell death means strictly necrosis in this article. This assumption is

based on the lack of any experimental data showing apoptosis in EMT6/Ro

spheroids, as well as the fact that the majority of cell death in the spheroids

occurs by necrosis (6). Spheroid experiments using other cell lines, e.g., Rat

1-T1 and MR1, have shown a low level of single cell death via apoptosis

occurring in the viable cell rim despite sufficient nutrient availability (36).

This feature can be easily accommodated in ourmodel, althoughwe believe it

will have little impact on the overall spheroid dynamics.

This cellular model evolves by a standard Monte Carlo procedure. A

random lattice site is selected; the cell ID at this site is changed to the value

of one of its unlike neighbors’ ID. The probability for accepting such a

change is

p ¼ 1; DH, 0

e
�DH
kbT; DH$ 0

;

�
(2)

where DH is the total energy difference due to such a change, and T is the

effective cell temperature, corresponding to the amplitude of cell membrane

fluctuation (37). A Monte Carlo step (MCS) consists of as many trial lattice

updates as the total number of lattice sites. The cell system minimizes its

total energy. If there is no cell growth, division, or death, this model would

reproduce the cell configuration that minimizes the total cell surface

adhesion energy (31).

We set the target volume to be twice the initial cell volume, so that the

cell grows in time until its volume reaches the target volume. Each cell also

carries a cell clock, which ticks to a maximum time corresponding to the

duration of a cell cycle. Only when the cell clock reaches the cell-cycle dura-

tion and the cell volume reaches the target volume will the cell decide to

divide. Cell division is simply reassigning half of the volume to a new cell

ID. The daughter cells inherit all properties of their parent.

Extracellular microenvironment

Cells also interact with their microenvironment, which is characterized by

local concentrations of biochemicals. The extracellular microenvironment

includes nutrients (oxygen and glucose), metabolic waste, growth pro-

moters, and inhibitors. Based on previous measurements with the EMT6 cell

line (28), we assume that most of the glucose consumed (75%) flows through

the anaerobic glycolysis and produces lactate as waste, while a minority

(25%) flows through the Krebbs cycle and respiration; oxygen consumption

is connected to glucose consumption through respiratory catabolism to

generate CO2, which rapidly diffuses away. Hence, we consider that the

main waste in the tumor is lactate, and that the lactate production rate is 1.5

times the glucose consumption rate.

In our model, oxygen and glucose are viability promoters, while lactate

is viability inhibitor. Our model considers generic growth and inhibitory

factors. Chemical reaction-diffusion is described by

@u

@t
¼ D=

2
u1 f ðx; y; zÞ: (3)

This is the generic equation for all chemicals in our model (detailed

equations are shown in Appendix): the chemical concentration u diffuses

with the diffusion coefficient D and is produced (or consumed) at rate f.
The metabolic rate f depends on the individual cell’s state (proliferating,

quiescent, or necrotic); thus, it is a function of location.

We make a few further simplifying assumptions. In reality, a spheroid

consists of tumor cells, their extracellular matrix, and the necrotic core;

chemicals diffuse in the extracellular matrix, and bind and are internalized

(or generated and secreted) by the cells; chemicals also diffuse in the
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necrotic core with a different diffusion constant. As we do not include the

extracellular matrix explicitly in our cellular model, we assume that 1),

inside the spheroid the diffusion coefficients are constant, neglecting the

differences of diffusion rates in extracellular matrix or cells or necrotic core;

and 2), each cell is chemically homogeneous, although different cells

might have different chemical concentrations. In the spheroid experiments,

oxygen, nutrients, and growth factors are supplied to the surface of the

spheroid via convection, and the cell medium is updated frequently such that

the chemical concentrations in the medium are kept constant. So we addi-

tionally assume that: 3), the cell-culture medium outside the spheroid main-

tains a constant level of metabolites; and 4), the external medium has no waste

or inhibitory factors in it. With these assumptions, we can solve the equations

on a much coarser lattice than the lattice for cells. More details are described

in the Appendix.

Cell cycle

The passage of a cell through its cell cycle is controlled by cytoplasmic

proteins, the main players of which include cyclins, CDKs, CKIs, and the

anaphase-promoting complex. Since experiments demonstrate that.85% of

the quiescent cells in spheroids are arrested in the G1-phase (9,14), in our

model, the cells in their G1-phase have the highest probability of becoming

quiescent. To realistically represent this cell-cycle arrest, we include a

simplified protein regulatory network to control the transition between the

G1- and S-phases. If the cell passes the G1-S transition checkpoint, it will

most likely proceed toward mitosis (or division). Arrest of cells in the S- and

G2-phases has been documented in spheroids of some cell lines, but not others

(14); however, the number of such cells in a spheroid is relatively small.

Our simplified protein regulatory network, shown in Fig. 2, is based on

the cell-cycle protein regulatory network for Homo sapiens from the Kyoto

Encyclopedia of Genes and Genomes (http://www.kegg.com/). We include

the following list of proteins: GSK3b, TGFb, SMAD3, SMAD4, SCF, CDK

inhibitors 4a–d (p15, p16, p18, p19), Kip 1,2 (p27, p57), Cip1 (p21), cyclins

D and E, Rb, and E2F. We ignore a few other proteins, such as Cyclin A,

from the network because they do not influence the outcome of our network.

The proteins we selected come into play at different stages of the G1-phase

and their influence differs in duration. For simplicity, we combine the groups

of proteins whose expressions have the same effect on the final outcome of

the network. Thus, p15 in Fig. 2 stands for p15, p16, p18, and p19 (the whole

group of CDK inhibitors 4a–d), and p27 includes p57 expression as well. In

our model, these proteins can have only two levels of expression—on and

off. If the link pointing to a protein ends with an arrow, it means the link is

stimulatory; if the link ends with a bar, it means the link is prohibitory.

This network of proteins is designed to favor the cell transition from

G1- to S-phase. However, concentrations of the growth and inhibitory

factors directly influence the protein expression, and thus the cell prolifera-

tion state. At every time step, we calculate a local factor level of

Factor level ¼ 11 e
�a

gF�ihF
initGF

�uð Þ� ��1

; (4)

where gF and ihF are current local concentrations of growth and inhibitory

factors, respectively—in which both are outputs of the extracellular

chemical equations; initGF is the concentration of growth factors in the

medium surrounding the aggregate; u is a factor level threshold; and a is

a free parameter. If the factor level is above the threshold, the protein is

turned on under two circumstances: if all the links pointing to it are

stimulatory and all the proteins at the beginning of the links are on; or if all
the links are prohibitory and the proteins at the beginning of the links are off.

All other situations would turn off the protein. If the factor level is below the

threshold, this factor level is the probability that a protein will be turned on

or off—the higher the factor level (as a result of high growth factor level and

low inhibitory factor level), the higher the probability of protein being turned

on or off. If the outcome of this Boolean regulatory network is zero, i.e.,

protein E2F is off, the cell undergoes cell-cycle arrest or turns quiescent.

Otherwise, it continues its transit through the cell cycle.

Simulation

The integration of these three parts of the model is illustrated in the flow

chart (Fig. 3). The tumor growth starts from a single tumor cell in the center

of the lattice with its first set of proteins turned on (top tier in Fig. 2). Cell

growth and division follow the cell cycle, which we divide into 16 stages.

According to their respective durations, we assign G1-phase to consist of six

stages, S-phase of six stages, and G2- and M-phases of four stages com-

bined. Hence the whole cell-cycle duration, which is ;12 h in an expo-

nentially growing monolayer culture, is equivalent to 16 stages. In our

model, cells typically double their volume in four Monte Carlo steps (MCS).

So each cell-cycle stage corresponds to 1/4 MCS or ;3/4 h.

During each iteration, we first evolve the cell lattice for 1/4 MCS, then

solve chemical reaction diffusion equations for 3/4 h to obtain the

concentrations of metabolites for each cell. For cells during G1-phase, the

local factor levels change the expressions of proteins in the regulatory

network. The cell then reacts to its local environment in the following steps.

First, it checks the local chemical environment: a proliferating cell decides

whether to proceed to the next stage of the cell cycle or become quiescent,

while a quiescent cell decides whether to become necrotic because of hostile

environment. Second, it checks the current cell volume: if it has not grown

proportional to the time it has lived in this cell cycle, it will become

quiescent because of stress (see below for explanation). Finally, a pro-

liferating cell checks whether it has fulfilled the requirements to divide: if

yes, it divides into two cells, if not, it continues to progress through the cell

cycle. The model then repeats the iterations.

Solid stress (38) and increased interstitial fluid pressure (22,39–41) inside

a solid tumor are found to inhibit cell growth in multicellular spheroids and

tumors. To account for the effect external pressure may have on the cell

cycle, we include check points at the end of each phase of the cell cycle to

determine if the cell has increased its volume accordingly. If the cell does not

increase its volume proportional to the time it has spent in that and previous

phases, it will become quiescent due to pressure exerted by the surrounding

tissue. When a cell turns quiescent, it reduces its metabolism and stops its

growth. When a cell dies, it becomes part of the necrotic core (special cell

with ID 0). For a short period of time (24 h) after the cell dies via necrosis,

the cell produces inhibitory factors and some waste.

In spheroid experiments, it has been observed that mitotic cells are

shed from the surface of the spheroid at a constant rate per spheroid

surface—i.e., ;218 cells per square millimeter of spheroid surface per hour

FIGURE 2 Simplified protein regulatory network for the G1-S phase

transition. The G1 phase consists of six stages (six levels of grayscale).
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for the EMT6 cell line (18,42). In our model, if a proliferating cell is at the

surface of a spheroid of radius.0.03 cm (18), it can shed away with a 20%

shedding probability. Shed cells disappear from further consideration in the

model.

Parameters

Our simulations use parameters derived from spheroids using the mouse

mammary tumor cells, EMT6/Ro. The experimental data for this particular

cell line are abundant (e.g., 8,9,28–30). Although the diffusion coefficients

for oxygen, glucose, and lactate are more readily available in literature

(listed in Table 1), their metabolic rates are harder to come by. We have

derived metabolic rates for oxygen and glucose from different sources

(28,29). Stoichiometrically, every glucose molecule that goes through

anaerobic catabolism by glycolysis generates two lactate molecules. Since

some glucose molecules go through respiratory catabolism instead, we

assumed that on average each glucose molecule consumed results in 1.5

lactate molecules, or the production rate of lactate is 1.5 times the

consumption rate of glucose (see Table 1). The linkage between waste

production and nutrient consumption necessitates that the waste production

rate of quiescent cells is also half that of proliferating cells (28,29).

We have two sets of units in the model: lattice size and Monte Carlo steps

(MCS) in the cellular model, and centimeters and hours in the extracellular

chemical equations. By equating a maximal cell volume in the model to a real

cell size (e.g., 43 43 4 voxels ¼ 1.23 103 mm3), we can convert a lattice

spacing to centimeters. In addition, by equating the duration of the cell cycle

in the model and in real life (e.g., 4 MCS ¼ 12 h), we have the conversion

that oneMCS is equal to 3 h. With these conversions, all physical parameters

can be translated to our model units, and all the model measurements can be

translated into real physical units.

When we convert the metabolic and diffusion parameters to model units,

we take into account the space occupied by extracellular matrix that is

omitted in our cellular model. The lack of data for growth and inhibitory

factors allows us to use relative scale for these factors; we assume that the

medium supplies 100% of required growth factors, and no inhibitory factors

are present outside the spheroid. Consistent with experimental data, we

assume that metabolic rates of quiescent EMT6/Ro cells are approximately

equal to half of that of proliferating cells (28,29).

The diffusion coefficient for oxygen is derived from extensive

microelectrode measurements in spheroids (30,43). The diffusion coef-

ficients for glucose and lactate come from previous experimental deter-

minations on spheroids (44,45). The diffusion coefficients used for the

growth and inhibitory factors were determined by an iterative process to

determine those that gave the best fits to the experimental data. The diffusion

coefficients estimated in this fashion were in the range between 10�6 and

10�7 cm2/h.

As the development of the solid tumor is dominated by cell growth

and division, as well as the response to the microenvironment, the simula-

tion results are not sensitive to the differences in cellular adhesion, or the

coupling energy coefficients Jtt9 in Eq. 1, at all. The main effect of the

coupling energy is to keep cells together, rather than morphogenesis due to

TABLE 1 Metabolic rates for nutrients, waste, growth, and inhibitory factors for EMT6/Ro

Oxygen Glucose Waste Growth factors Inhibitory factors

Proliferating cell 108* 162* 240* 1y 0y

Quiescent cell 50* 80* 110* 0.5y 1y

Necrotic 0 0 0 0 2y

Diffusion constant 5.94 3 10�2z 1.52 3 10�3z 2.124 3 10�3z 10�6z 10�6z

*The unit is [mM/h/cm3].
yThe unit is [%/h/cm3].
zThe unit is [cm2/h].

FIGURE 3 Flow chart of the model showing the inte-

gration between the intra-, inter-, and extracellular levels.
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differential adhesion. Though no experimental evidence has indicated that

quiescent cells have different cell adhesivity than proliferating ones, we keep

the differential adhesion capability in the model for further model devel-

opment (e.g., including endothelial cells). In all the simulations reported

below, we use the following set of values for the coupling energy coefficient

J: JP,P ¼ JP,Q ¼ 28, JP,N ¼ 24, JP,M ¼ 16, JQ,N ¼ 22, JQ,M ¼ 14, and JN,M ¼
12, where P, Q, N, and M stand for proliferating, quiescent, necrosis, and

medium, respectively. These values could cause cells to ‘‘sort,’’ as in (31).

But because cell sorting due to differential adhesion is a slow process, the

tumor development is dominated by the growth and division of cells as well

as their reaction to the chemical environment. The tumor growth results

would not be different if we used one single value for all coupling co-

efficients.

Volume constraint coefficient g for proliferating cells usually had value

between 1 and 3. To ensure that quiescent cells do not change their volume

easily, once a cell turns quiescent, we set the target volume to its current

volume and increase its volume constraint to four times its current value. As

cells die, their current volumes are added to the necrotic core volume, and

the quiescent and proliferating cells cannot grow against the necrotic region.

In our simulations, oxygen concentration below 0.02 mM, glucose

concentration below 0.06 mM, and lactate concentration above 8 mM

are conditions for cell necrosis. These threshold values are determined in

the following process: we start from the lowest oxygen and glucose con-

centrations used in experiments (e.g., 0.07 mM O2 and 0.8 mM glucose,

from (9)), and tune the threshold values to produce tumor growth that best fit

to the experimental growth curves. Then we use a fraction of the lowest con-

centrations, and further tune the values to produce good growth curves.

RESULTS

Starting fromone single cell, a tumor in our simulations grows

into a spheroidal, layered structure consisting of proliferating

and quiescent cells surrounding a necrotic core. Fig. 4 shows

the cross sections of the same spheroid at different stages of

growth: the initial proliferating cell aggregate; the onset of

quiescence; and the appearance of a necrotic core. The last

cross section is comparable with the experimental picture in

Fig. 1 a.
Fig. 5 shows the growth curves of a solid tumor in

comparison with two sets of experimental data. With 0.08

mM oxygen and 5.5 mM glucose kept constant in the

medium, the number of cells (Fig. 5 a) and the tumor volume

(Fig. 5 b) first grow exponentially in time for ;5–7 days.

The growth slows down, coinciding with the appearance of

quiescent cells. In both the experiments and simulations,

spheroid growth saturates after;28–30 days. We fit both the

experimental and the simulation data to a Gompertz func-

tion, y ¼ y0 exp(a(1 � exp(�bt)), to objectively estimate the

initial doubling times and the spheroid saturation sizes

(8,10). The initial volume and cell number doubling times

for the experiments and the simulation differed by less than

an hour (8.6–9.5 h). The saturation sizes were more different,

with the simulation overestimating the experimental maxi-

mal sizes by factors of 2 (cell number) and 2.5 (spheroid

volume). Given that the simulation covered a range of

spheroid growth of 4–5 orders of magnitude, this agreement

with experiment is excellent.

Experimentally, the fraction of cells in the various cell-

cycle phases was determined by standard flow cytometric

measurement of cellular DNA content as described in detail

previously (9). Solid symbols in Fig. 6 are experimental

measurements of cell-cycle fraction for G1-, S-, and G2-

phases (from (10)). Open symbols are simulation data. We

see in both experimental and simulation data that as the

spheroid radius increases, the fraction of cells in G1-phase

increases, at the same time the fraction of cells in S-phase

drops at a comparable rate. Percent of cells in G2-phase re-

mains roughly constant throughout the spheroid growth. The

simulation data showed an initially high degree of var-

iability, mostly accounted for by the nonrandom distribution

of the initial aggregate and the discrete time sampling in-

volved.

During the development of a layered spheroid structure

the thickness of the viable rim (proliferating and quiescent

cells) remains approximately constant in time (11). In our

simulation, we measured thickness of viable rim of spheroids

by subtracting the necrotic core radius from the radius of

the spheroid. Fig. 7 shows the simulation data for the viable

rim thickness as a function of spheroid size for spheroids

growing in 0.08 mM of oxygen and 5.5 mM of glucose

FIGURE 4 From simulation, cross-sectional view of a spheroid at different stages of development, with cyan, yellow, and magenta correspond to prolif-

erating, quiescent, and necrotic cells. From left to right, 2 days, 10 days, and 18 days of tumor development, respectively, from a single cell.

Avascular Tumor Growth Model 3889

Biophysical Journal 89(6) 3884–3894



medium, where open symbols are simulation data and closed

symbols experimental measurements. The simulation results

agree nicely with experiments in terms of long-term be-

haviors: the necrotic core increases at almost exactly the

same rate as the whole spheroid, while the viable rim size

remains roughly constant. However, our data show an initial

rapid expansion of necrotic core at the onset of necrosis,

which is not present in the EMT6 spheroid data. This rapid

initial onset of necrosis in spheroids has been both predicted

and demonstrated experimentally in other cell systems

(17,46).

To test the robustness of our model, we kept all the param-

eters in the model fixed at the values determined to produce

the best fit to the growth of spheroids in 0.08 mM oxygen

and 5.5 mM glucose. We then varied only the nutrient con-

centrations in the medium, as was done in previous spheroid

experiments. Fig. 8 shows an example of the good agreement

between simulation and experimental growth curves when the

external conditions are changed to 0.28 mMO2 and 16.5 mM

glucose in the medium. Again, fits of the experimental and

simulation data to a Gompertz equation showed good agree-

ment in the initial doubling times and the spheroid saturation

sizes.

DISCUSSION

In our simulations, a single tumor cell evolves into a layered

structure consisting of concentric spheres of proliferating

and quiescent cells at the surface and intermediate layer

respectively, and the necrotic core at the center of the spher-

oid. The spheroid maximum size and the total number of

viable cells depend on the chemical environment provided in

the medium. Our simulations result in a set of conditions for

the cell to undergo necrosis: oxygen concentration below

FIGURE 5 The growth curves of spheroid with 0.08 mM O2 and 5.5 mM

glucose in the medium. (a) The number of cells and (b) the volume of

spheroid in time. The solid diamonds and squares are experimental data for

EMT6/Ro, the circles are simulation results. The solid lines are the best fit

with a Gompertz function (see text) for experimental data.

FIGURE 6 Cell-cycle fraction as a function of time with 0.08 mM O2 and

5.5 mM glucose in the medium. Solid symbols are experimental measure-

ments from the EMT6/Ro cell line; open symbols are the corresponding

simulation. (Red lines indicate G1-phase, black lines indicate S-phase, and
blue lines indicate the G2-phase.)

FIGURE 7 Size of viable rim versus spheroid diameter with 0.08 mM O2

and 5.5 mM glucose in the medium. After initial linear growth, viable rim

thickness reaches approximately constant value. Solid symbols are experi-

mental data from the EMT6/Ro cell line; open symbols are simulation results.
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0.02 mM, glucose concentration below 0.06 mM, and waste

(lactate) concentration above 8 mM. Although it has been

shown that cells can survive these nutrient/waste concen-

trations individually, there are currently no experimental data

available on the effects of combined exposure to these

microenvironmental conditions. These simulation results

suggest that cells are able to survive even in a very nutrient-

deprived environment. These predictions can be tested

experimentally only if chemical concentrations in the

spheroid microenvironment can be systematically measured,

which is difficult using currently-available techniques such

as microelectrodes (30) or bioluminescence (36).

The diffusion coefficients for the growth promoters and

inhibitors are found to be in the order of 10�7 and 10�6 cm2/h,

respectively. This diffusion constant range is on the order

of that for peptide growth and inhibitory factors known to

regulate cellular proliferation (e.g., epidermal growth factor,

fibroblast growth factor, tumor necrosis factor, and tumor

growth factor b) based on extrapolation from previous

measurements in spheroids (44). Thus, the model predicts

that cellular proliferation in this system is regulated by

a combination of limited growth promoters and internally

produced growth inhibitors. Interestingly, previous work by

Freyer et al. (12) has shown that a peptide inhibitory factor

was produced by the necrotic regions of spheroids, and that

this inhibitory factor was 80–90 kDa, which would have

a predicted diffusion constant of ;1 3 10�7 cm2/h in

spheroids.

Our model produces spheroid volume and cell number

growth in remarkable agreement with experimental data

(Figs. 5 and 8). Some adjustment of the simulation param-

eters was performed to optimize this agreement, but the final

parameters used in the simulation shown in Fig. 4 are very

close to experimentally measured values, when available.

Importantly, when all parameters were kept constant but the

external concentrations of oxygen and glucose were altered,

the simulation produced growth curves very similar to a

separate set of experiments done under the altered supply

conditions (Fig. 8). This suggests that the underlying model

is accurately representing the dynamic development of the

tumor mass across a wide range of time and distance scales.

The simulation underestimates the number of cells when the

tumor grows to a size comparable to the total lattice size

(Fig. 8). At this point the numerical artifacts in solving the

chemicals result in more accumulation of waste in the tumor,

hence more cell death. This artifact also explains the earlier

tumor growth saturation for the simulation compared to the

experimental data in Fig. 8.

The estimates of cell-cycle fractions as a function of

spheroid growth show good agreement with the experimen-

tal data, especially at large spheroid sizes (Fig. 6). This sug-

gests that the model, and specifically the protein regulatory

network incorporated therein, is able to predict the regula-

tion of cellular proliferation. The major discrepancy between

the simulation and the experimental data occurs at small

spheroid diameters. This can be explained by the difference

in how these two data sets were generated. The experimental

data represents an average of many (25–100) individual

spheroids, while the simulation shows the values for an

individual spheroid. Thus, the early simulation results are

greatly affected by the cell-cycle stage of the initial cell or

small aggregate. Multiple simulations with different starting

conditions or an initial condition with more cells in random

stages of cell cycle should average to more accurately match

the experimental data.

The simulations of the viable rim thickness indicate

that our model is able to reproduce the experimental data,

especially at spheroid diameters significantly larger then

twice the rim thickness. This strongly suggests that necrotic

cell death in spheroids is regulated by a combination of

nutrient depletion and waste accumulation, and that the

progression of necrosis is uncoupled from the regulation of

proliferation (9,10,47). Our simulations, however, show an

FIGURE 8 The growth curves of spheroid with 0.28 mMO2 and 16.5 mM

glucose in the medium: (a) the number of cells and (b) the volume of

spheroid in time. The solid diamonds and squares are experimental data for

EMT6/Ro; open circles are simulation results. The solid lines are the best fit

with a Gompertz function to the experimental data.
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initial rapid growth of the necrotic core, which later slows

down to grow at almost exactly the same rate as the whole

spheroid. The data available for the EMT6 cell line do not

include measurements in the size range at which this rapid

initial expansion is predicted to occur (Fig. 7). However,

very careful experiments with human tumor spheroids have

demonstrated exactly this rapid initial expansion of necrosis

in spheroids (17). Depletion of substrates or accumulation

of waste products has been proposed to be the cause (17).

Detailed analysis of this rapid initial necrosis is underway.

It is somewhat surprising that the simplified protein regu-

latory network that controls cell-cycle arrest in our model

could produce such a good match to the spheroid data. This

result supports the idea that proliferation arrest is regulated

by the induction of a few specific proteins, which act pri-

marily in the G1-phase of the cell cycle. The current model

is entirely consistent with the recent work showing that G1-

specific CKIs are induced, and actively inhibit, their target

CDKs relatively close to the spheroid surface (14). Our

modeling results also suggest that microenvironmental in-

duction of growth arrest is not caused by restrictions on

volumetric expansion of the spheroid. Even though the

model incorporates such a mechanism for cell-cycle arrest,

the results predict that arrest is actually caused by the

induction of G1-phase regulatory proteins. It is important to

note that restricted volumetric growth may be an important

consideration when spheroids, or nodular tumors, are sur-

rounded by a semirigid matrix (38). Our model can be further

refined to include other regulatory pathways, such as S- and

G2-phase arrest, as well as to provide a finer degree of

protein regulation than the on-off Boolean logic used in the

current version. We are investigating whether such refine-

ment can provide a better match of the simulated cell-cycle

distributions and growth curves to the experimental data.

More detailed analysis is possible in our model. For

example, protein expression levels and chemical concen-

trations can be relatively easily obtained from the simu-

lations. Unfortunately, other than for oxygen, there are

currently no experimental data available for comparison with

the chemical composition of the spheroid microenvironment

predicted by our model. In the case of oxygen, we have

obtained concentration gradient profiles that are consistent

with previous measurements using microelectrodes in EMT6

spheroids (30), even though the experimental data were ob-

tained on different spheroids at different times. We are also

working on extending the current model past the avascular

stage of tumor growth by incorporating angiogenesis through

a separate protein regulatory network regulated by the micro-

environment.

CONCLUSIONS

We have developed a comprehensive, multiscale cellular

model of avascular tumor growth. On the subcellular level,

we consider a simple protein network that controls transition

between the G1- and S-phases of cell cycle. On the cellular

level, our model uses a lattice Monte Carlo model for cell

dynamics. On the extracellular level, a set of continuous

chemical reaction-diffusion equations describe metabolites,

catabolites, growth factors, and inhibitory factors. The envi-

ronmental parameters we considered were oxygen, glucose,

and lactate concentrations, and relative concentrations of

growth and inhibitory factors. Simulations under different

environmental conditions show both qualitative and quanti-

tative agreement with the experimental data from EMT6/Ro

mouse mammary tumor spheroids. The model predicts the

survival conditions for cells in the microenvironment, and

suggests possible candidates for growth promoters and inhi-

bitors that control cell-cycle arrest.

APPENDIX

The detailed equations for chemicals are

@uO2

@t
¼ DO2

=
2
uO2

1 aðx; y; zÞ;

@un

@t
¼ Dn=

2un 1 bðx; y; zÞ;

@uw

@t
¼ Dw=

2
uw 1 cðx; y; zÞ;

@ugf

@t
¼ Dgf=

2
ugf 1 dðx; y; zÞ;

@uif

@t
¼ Dif=

2
uif 1 eðx; y; zÞ:

In these equations, subscripts O2, n, w, gf, and if stand for oxygen, nutrients,

waste, growth, and inhibitory factors, respectively. D is the diffusion

coefficient. Variables a, b, c, d, and e are consumption and production rates

of these chemicals. Their initial values, ao, b0, and c0 are listed in Table 1.

After we calculate chemical concentrations, we adjust the cells’ con-

sumption rate according to the changed concentrations of oxygen and

glucose,

a ¼ a0

uO2
� u

T

O2

u
O

O2
� u

T

O2

;

b ¼ b0

un � u
T

n

u
O

n � u
T

n

;

c ¼ C0

a=a0 1 b=b0

2
;

where uO is the optimal concentration, and uT is the threshold concentration.

The optimal concentration is 0.28 mM for O2 and is 5.5 mM for glucose. The

threshold concentrations are determined iteratively as described above near

the end of Parameters in Methods (Cellular Model), above. The production

rate of waste is directly proportional to the consumption rates for oxygen and

glucose; therefore, higher consumption corresponds to higher waste pro-

duction. As each cell carries its own consumption rates, which vary accord-

ing to the cell’s state as well as the local chemical field, these rates also vary

in space.

The boundary conditions at the tumor medium interface are

uO2
¼ u

0

O2
; un ¼ u

0

n; uw ¼ 0; ugf ¼ 1; uif ¼ 0:
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At time zero, no chemical is present inside the tumor (single cell).

When cells react to the chemical environment, the quiescent cells pro-

duce a small amount of inhibitory factors. During the first 24 h after a cell

becomes necrotic, it secretes inhibitory factors at the rate of 0.1 ml/h and

waste at the rate of 10 mM/h.

Since each cell is considered to be chemically homogeneous, the

chemical reaction diffusion equations need to be solved on an irregular

three-dimensional grid with nodes at the center of mass of every cell. We

simplify the matter by coarse-graining the cell lattice by a factor of 4, such

that the grid is still regular and only a few grid points exist inside each cell,

and the concentration within an individual cell is the average of the

concentrations on the grid points within that cell.

We thank J. Toivanen and V. Dyadechko for providing us with a fast three-

dimensional PDE solver, and H. Show for help in finding diffusion

coefficients from literature. We also thank the anonymous referees for very

constructive comments.

This work was supported by the U.S. Department of Energy under contract

No. W-7405-ENG-36 and by grants No. CA-71898, CA-89255, and CA-

108853 from the National Cancer Institute.

REFERENCES

1. Osada, H., and T. Takahashi. 2002. Genetic alterations of multiple
tumor suppressors and oncogenes in the carcinogenesis and pro-
gression of lung cancer. Oncogene. 21:7421–7434.

2. Klaunig, J. E., and L. M. Kamendulis. 2004. The role of oxidative
stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 44:239–
267.

3. Mueller-Klieser, W. 2000. Tumor biology and experimental therapeu-
tics. Crit. Rev. Oncol. Hematol. 36:123–139.

4. Brown, J. M. 2002. Tumor microenvironment and the response to
anticancer therapy. Cancer Biol. Ther. 1:453–458.

5. Vaupel, P., and M. Hockel. 2000. Blood supply, oxygenation status
and metabolic micromilieu of breast cancers: characterization and
therapeutic relevance (Review). Int. J. Oncol. 17:869–879.

6. Sutherland, R. M. 1988. Cell and environment interactions in tumor
microregions: the multicell spheroid model. Science. 240:177–184.

7. Kunz-Schughart, L. A., M. Kreutz, and R. Knuechel. 1998. Multi-
cellular spheroids: a three-dimensional in vitro culture system to study
tumour biology. Int. J. Exp. Pathol. 79:1–23.

8. Freyer, J. P., and R. M. Sutherland. 1986. Regulation of growth
saturation and development of necrosis in EMT6/Ro multicellular
spheroids by the glucose and oxygen supply. Cancer Res. 46:3504–
3512.

9. Freyer, J. P., and R. M. Sutherland. 1986. Proliferative and
clonogenic heterogeneity of cells from EMT6/Ro multicellular spher-
oids induced by the glucose and oxygen supply. Cancer Res. 46:3513–
3520.

10. Freyer, J. P. 1988. Role of necrosis in regulating the growth saturation
of multicellular spheroids. Cancer Res. 48:2432–2439.

11. Marusic, M., Z. Bajzer, J. P. Freyer, and S. Vuk-Pavlovic. 1994.
Analysis of growth of multicellular tumor spheroids by mathematical
models. Cell Prolif. 27:73–94.

12. Freyer, J. P., P. L. Schor, and A. G. Saponara. 1988. Partial purification
of a protein growth inhibitor from multicellular spheroids. Biochem.
Biophys. Res. Commun. 152:463–468.

13. LaRue, K. E., M. E. Bradbury, and J. P. Freyer. 1998. Regulation of
G1 transit by cyclin kinase inhibitors in multicellular spheroid cultures
of rat embryo fibroblast cells transformed to different extents. Cancer
Res. 58:1305–1314.

14. LaRue, K. E., M. Kahlil, and J. P. Freyer. 2004. Microenvironmental
regulation of proliferation in EMT6 multicellular spheroids is mediated

through differential expression of cyclin-dependent kinase inhibitors.
Cancer Res. 64:1621–1631.

15. Marusic, M., Z. Bajzer, S. Vuk-Pavlovic, and J. P. Freyer. 1994. Tumor
growth in vivo and as multicellular spheroids compared by mathe-
matical models. Bull. Math. Biol. 56:617–631.

16. Groebe, K., and W. Mueller-Klieser. 1991. Distribution of oxygen,
nutrient, and metabolic waste concentrations in multicellular spheroids
and their dependence on spheroid parameters. Eur. Biophys. J. 19:169–
181.

17. Groebe, K., and W. Mueller-Klieser. 1996. On the relation between
size of necrosis and diameter of tumor spheroids. Int. J. Radiat. Oncol.
Biol. Phys. 34:395–401.

18. Landry, J., J. P. Freyer, and R. M. Sutherland. 1982. A model for
the growth of multicellular tumor spheroids. Cell Tissue Kinet. 15:
585–594.

19. Sherrat, J. A., and M. A. J. Chaplain. 2001. A new mathematical model
for avascular tumor growth. J. Math. Biol. 43:291–312.

20. Chen, C. Y., H. M. Byrne, and J. R. King. 2001. The influence of
growth-induced stress from the surrounding medium on the develop-
ment of multicell spheroids. J. Math. Biol. 43:191–220.

21. Jackson, T. L., and H. M. Byrne. 2000. A mathematical model to study
the effects of drug resistance and vasculature on the response of solid
tumors to chemotherapy. Math. Biosci. 164:17–38.

22. Sarntinoranont, M., F. Rooney, and M. Ferrari. 2003. Interstitial stress
and fluid pressure within a growing tumor. Ann. Biomed. Eng. 31:
327–335.

23. Borkenstein, K., S. Levegruen, and P. Peschke. 2004. Modeling and
computer simulations of tumor growth and response to radiotherapy.
Radiat. Res. 162:71–83.

24. Mansury, Y., M. Kimura, J. Lobo, and T. S. Deisboeck. 2002.
Emerging patterns in tumor systems: simulating the dynamics of multi-
cellular clusters with an agent-based spatial agglomeration model. J.
Theor. Biol. 219:343–370.

25. Stott, E., N. F. Britton, J. A. Glazier, and M. Zajac. 1999. Stochastic
simulation of benign avascular tumor growth using the Potts model.
Math. Comput. Model. 30:183–198.

26. Alarcon, T., H. M. Byrne, and P. K. Maini. 2004. A multiple scale
model for tumor growth. Multiscale Model. Sim. 3:440–475.

27. Alarcon, T., H. M. Byrne, and P. K. Maini. 2004. Towards whole-
organ modelling of tumour growth. Prog. Biophys. Mol. Biol. 85:451–
472.

28. Freyer, J. P., and R. M. Sutherland. 1985. A reduction in the in situ
rates of oxygen and glucose consumption of cells in EMT6/Ro
spheroids during growth. J. Cell. Physiol. 124:516–524.

29. Freyer, J. P. 1994. Rates of oxygen consumption for proliferating and
quiescent cells isolated from multicellular tumor spheroids. Adv. Exp.
Med. Biol. 345:335–342.

30. Mueller-Klieser, W., J. P. Freyer, and R. M. Sutherland. 1986.
Influence of glucose and oxygen supply conditions on the oxygenation
of multicellular spheroids. Br. J. Cancer. 53:345–353.

31. Glazier, J. A., and F. Garner. 1993. Simulation of the differential
adhesion driven rearrangement of biological cells. Phys. Rev. E. 47:
2128–2154.

32. Jiang, Y., H. Levine, and J. A. Glazier. 1998. Possible cooperation of
differential adhesion and chemotaxis in mound formation of Dictyos-
telium. Biophys. J. 75:2615–2625.

33. Izaguirre, J. A., R. Chaturvedi, C. Huang, T. Cickovski, G. Thomas, G.
Forgacs, M. Alber, G. Hentschel, S. A. Newman, and J. A. Glazier.
2004. CompuCell, a multi-model framework for simulation of morpho-
genesis. Bioinformatics. 20:1129–1137.

34. Steinberg, M. S. 1963. Reconstruction of tissues by dissociated cells.
Science. 141:401–408.

35. Duguay, D., R. A. Foty, and M. S. Steinberg. 2003. Cadherin-mediated
cell adhesion and tissue segregation: qualitative and quantitative deter-
minants. Dev. Biol. 253:309–323.

Avascular Tumor Growth Model 3893

Biophysical Journal 89(6) 3884–3894



36. Walenta, S., J. Doetsch, W. Mueller-Klieser, and L. Kunz-Schughart.
2000. Metabolic imaging in multicellular spheroids of oncogene-
transfected fibroblasts. J. Histochem. Cytochem. 48:509–522.

37. Beysens, D. A., G. Forgacs, and J. A. Glazier. 2000. Cell sorting is
analogous to phase ordering in fluids. Proc. Natl. Acad. Sci. USA. 97:
9467–9471.

38. Helmlinger, G., P. A. Netti, H. C. Lichtenbeld, R. J. Melder, and R. K.
Jain. 1997. Solid stress inhibits the growth of multicellular tumor
spheroids. Nat. Biotechnol. 15:778–783.

39. Boucher, Y., L. T. Baxter, and R. K. Jain. 1990. Interstitial pressure
gradients in tissue-isolated and subcutaneous tumors: implications for
therapy. Cancer Res. 50:4478–4484.

40. Boucher, Y., J. Salehi, B. Witwer, G. R. Harsh, and R. K. Jain. 1997.
Interstitial fluid pressure in intracranial tumors in patients and in
rodents. Br. J. Cancer. 75:829–836.

41. Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E.
Kastenbauer, and R. K. Jain. 1992. Interstitial hypertension in head and
neck tumors in patients: correlation with tumor size. Cancer Res. 52:
1993–1995.

42. Landry, J., J. P. Freyer, and R. M. Sutherland. 1981. Shedding of
mitotic cells from the surface of multicell spheroids during growth.
J. Cell. Physiol. 106:23–32.

43. Mueller-Klieser, W. 1984. Method for the determination of oxygen
consumption rates and diffusion coefficients in multicellular spheroids.
Biophys. J. 46:343–348.

44. Freyer, J. P., and R. M. Sutherland. 1983. Determination of diffusion
constants for metabolites in multicell tumor spheroids. Adv. Exp. Med.
Biol. 159:463–475.

45. Casciari, J. J., S. V. Sotirchos, and R. M. Sutherland. 1988. Glucose
diffusivity in multicellular tumor spheroids. Cancer Res. 48:3905–
3909.

46. Bourrat-Floeck, B., K. Groebe, and W. Mueller-Klieser. 1991.
Biological response of multicellular EMT6 spheroids to exogenous
lactate. Int. J. Cancer. 47:792–799.

47. Freyer, J. P., P. L. Schor, K. A. Jarrett, M. Neeman, and L. O. Sillerud.
1991. Cellular energetics measured by phosphorous NMR spectros-
copy are not correlated with chronic nutrient deficiency in multicellular
tumor spheroids. Cancer Res. 51:3831–3837.

3894 Jiang et al.

Biophysical Journal 89(6) 3884–3894


